Gold: properties of compounds

The bond energy in the gaseous diatomic species AuAu is 224.7 ±1.5 kJ mol-1.

Gold: bond enthalpies in gaseous diatomic species

The following values refer to neutral heterodiatomic molecules in the gas phase. These numbers may well differ considerably from, say, single bond energies in a solid. All values are given in kJ mol-1.

Diatomic AuX bond enthalpies. All values are quoted in kJ mol-1. Each formula in the table (AuO, AuF, and so on) is a link - select these to see visual periodicity representations for bond enthalpies involving gold to elements of your choice.
AuH             AuHe
292.0 ±6.7              
AuLi AuBe AuB AuC AuN AuO AuF AuNe
284.5 ±6.7 285 ±8 367.8 ±10.5     221.8 ±20.9    
AuNa AuMg AuAl AuSi AuP AuS AuCl AuAr
215.1 ±12.6 243 ±42 325.9 ±6.3 305.4 ±5.9   418 ±25 343 ±9.6  
AuK AuCa AuGa AuGe AuAs AuSe AuBr AuKr
  243 234 ±38 274.1 ±5.0   243.1    
AuRb AuSr AuIn AuSn AuSb AuTe AuI AuXe
243 ±2.9 264 ±42 286.0 ±5.7 254.8 ±7.1   317.6    
AuCs AuBa AuTl AuPb AuBi AuPo AuAt AuRn
255 ±3.3 254.8 ±10.0   130 ±42 297 ±8.4      
AuFr AuRa            
               

Notes

I am grateful to Professor J.A. Kerr (University of Birmingham, UK) for the provision of the bond strengths of diatomic molecules data.

The values given here are at 298 K. All values are quoted in kJ mol-1. Generally, these data were obtained by spectroscopic or mass spectrometric means. You should consult reference 1 for further details. A note of caution: the strength of, say, the C-H bond in the gaseous diatomic species CH (not an isolable species) is not necessarily, the same as the strength of a C-H bond in, say, methane.

The strongest bond for a diatomic species is that of carbon monoxide, CO (1076.5 ± 0.4 kJ mol-1). The strongest bond for a homonuclear diatomic species is that of dinitrogen, N2 (945.33 ± 0.59 kJ mol-1).

References

  1. J.A. Kerr in CRC Handbook of Chemistry and Physics 1999-2000 : A Ready-Reference Book of Chemical and Physical Data (CRC Handbook of Chemistry and Physics, D.R. Lide, (ed.), CRC Press, Boca Raton, Florida, USA, 81st edition, 2000.

Gold: lattice energies

All values of lattice energies are quoted in kJ mol-1.

Table. All values of lattice energies are quoted in kJ mol-1.
Compound Thermochemical cycle / kJ mol-1 Calculated / kJ mol-1
AuF3 (no value) 5777
AuCl 1066 1013
AuCl3 (no value) 4605
AuBr 1061 1015
AuI 1070 1015
AuH (no value) 1033
No data for any oxides of gold.
  1. H.D.B. Jenkins - personal communication. I am grateful to Dr Don Jenkins (University of Warwick, UK) who provided the lattice energy data, which are adapted from his contribution contained within reference 2.
  2. H.D.B. Jenkins in CRC Handbook of Chemistry and Physics 1999-2000 : A Ready-Reference Book of Chemical and Physical Data (CRC Handbook of Chemistry and Physics, D.R. Lide, (ed.), CRC Press, Boca Raton, Florida, USA, 79th edition, 1998.

Standard Reduction Potentials

Standard reduction potentials of Au

References

The standard reduction potentials given here for aqueous solutions are adapted from the IUPAC publication reference 1 with additional data and an occasional correction incorporated from many other sources, in particular, references 2-7.

  1. A.J. Bard, R. Parsons, and J. Jordan, Standard Potentials in Aqueous Solutions, IUPAC (Marcel Dekker), New York, USA, 1985.
  2. N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd edition, Butterworth-Heinemann, Oxford, UK, 1997.
  3. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th edition, John Wiley & Sons, New York, USA, 1988.
  4. B. Douglas, D.H. McDaniel, and J.J. Alexander, Concepts and models of Inorganic Chemistry, 2nd edition, John Wiley & Sons, New York, USA, 1983.
  5. D.F. Shriver, P.W. Atkins, and C.H. Langford, Inorganic Chemstry, 3rd edition, Oxford University Press, Oxford, UK, 1999.
  6. J.E. Huheey, E.A. Keiter, and R.L. Keiter in Inorganic Chemistry : Principles of Structure and Reactivity, 4th edition, HarperCollins, New York, USA, 1993.
  7. G.T. Seaborg and W.D. Loveland in The elements beyond uranium, John Wiley & Sons, New York, USA, 1990.

WebElements chemistry shop

You can buy periodic table posters, mugs, T-shirts, periodic table fridge magnets, games, molecular models, and more at the WebElements periodic table shop