Chemistry Nexus

by WebElements: the periodic table on the web

Helium (He)In a letter to Nature E. Kim and M. H. W. Chan (Pennsylvania State University, USA) note that when liquid 4He is cooled below 2.176 K, it undergoes a phase transition and becomes a superfluid with zero viscosity. They claim that in addition to superflow in the liquid phase, superflow can also occur under some conditions in the solid phase of one of the helium isotopes (4He), and present results to back this up. In other words – evidence for a “supersolid”. A supersolid behaves like a superfluid (flows without resistance) although it has crystalline solid characteristics.1

Abstract:1 When liquid 4He is cooled below 2.176 K, it undergoes a phase transition—Bose–Einstein condensation—and becomes a super- fluid with zero viscosity. Once in such a state, it can flow without dissipation even through pores of atomic dimensions. Although it is intuitive to associate superflow only with the liquid phase, it has been proposed theoretically that superflow can also occur in the solid phase of 4He. Owing to quantum mechanical fluctuations, delocalized vacancies and defects are expected to be present in crystalline solid 4He, even in the limit of zero temperature. These zero-point vacancies can in principle allow the appearance of superfluidity in the solid. However, in spite of many attempts, such a ‘supersolid’ phase has yet to be observed in bulk solid 4He. Here we report torsional oscillator measurements on solid helium confined in a porous medium, a configuration that is likely to be more heavily populated with vacancies than bulk helium. We find an abrupt drop in the rotational inertia5 of the confined solid below a certain critical temperature. The most likely interpretation of the inertia drop is entry into the supersolid phase. If confirmed, our results show that all three states of matter—gas, liquid and solid—can undergo Bose–Einstein condensation.


1. Kim, E., and M. H. W. Chan, “Probable observation of a supersolid helium phase“, Nature, 2004, 427, 225-227,

December 19th, 2009

Posted In: Chemistry

Leave a Reply