Dysprosium: the essentials

Dysprosium has a metallic, bright silver lustre. It is relatively stable in air at room temperature, but dissolves readily, with the evolution of hydrogen, in mineral acids. The metal is soft enough to be cut with a knife and can be machined without sparking if overheating is avoided. It is a rare earth metal found in minerals such as xenotime, monazite and bastnaesite.

This sample is from The Elements Collection, an attractive and safely packaged collection of the 92 naturally occurring elements that is available for sale.

Dysprosium: historical information

Dysprosium was discovered by Paul Emile Lecoq de Boisbaudran in 1886 at France. Origin of name: from the Greek word "dysprositos" meaning "hard to obtain".

A lttle dysprosium oxide was identified in 1886 by Paul-Emile Lecoq de Boisbaudran as an impurity in erbia (erbium oxide), but the element itself not isolated at that time. Neither the oxide nor the metal was available in relatively pure form until the 1950s following the development of ion-exchange separation and metallographic reduction techniques.

Dysprosium around us Read more »

Dysprosium has no biological role.

Dysprosium is never found in nature as the free element. Dysprosium is found in the ores monazite sand [(Ce, La, etc.)PO4] and bastn°site [(Ce, La, etc.)(CO3)F], ores containing small amounts of all the rare earth metals. It is difficult to separate from other rare earth elements.

Abundances for dysprosium in a number of different environments. More abundance data »
Location ppb by weight ppb by atoms Links
Universe 2 0.02 Chemical elements abundance by weight in the universe on a miniature periodic table spark table
Crustal rocks 6200 790 Chemical elements abundance by weight in the earth's crust on a miniature periodic table spark table
Human (no data) ppb by weight (no data) atoms relative to C = 1000000 Chemical elements abundance by weight in humans on a miniature periodic table spark table

Physical properties Read more »

Heat properties Read more »

Crystal structure Read more »

The solid state structure of dysprosium is: hcp (hexagonal close-packed).

Dysprosium: orbital properties Read more »

Dysprosium atoms have 66 electrons and the shell structure is The ground state electronic configuration of neutral Dysprosium is [Xe].4f10.6s2 and the term symbol of Dysprosium is 5I8.


Isolation: dysprosium metal is available commercially so it is not normally necessary to make it in the laboratory, which is just as well as it is difficult to isolate as the pure metal. This is largely because of the way it is found in nature. The lanthanoids are found in nature in a number of minerals. The most important are xenotime, monazite, and bastnaesite. The first two are orthophosphate minerals LnPO4 (Ln deonotes a mixture of all the lanthanoids except promethium which is vanishingly rare) and the third is a fluoride carbonate LnCO3F. Lanthanoids with even atomic numbers are more common. The most comon lanthanoids in these minerals are, in order, cerium, lanthanum, neodymium, and praseodymium. Monazite also contains thorium and ytrrium which makes handling difficult since thorium and its decomposition products are radioactive.

For many purposes it is not particularly necessary to separate the metals, but if separation into individual metals is required, the process is complex. Initially, the metals are extracted as salts from the ores by extraction with sulphuric acid (H2SO4), hydrochloric acid (HCl), and sodium hydroxide (NaOH). Modern purification techniques for these lanthanoid salt mixtures are ingenious and involve selective complexation techniques, solvent extractions, and ion exchange chromatography.

Pure dysprosium is available through the reduction of DyF3 with calcium metal.

2DyF3 + 3Ca → 2Dy + 3CaF2

This would work for the other calcium halides as well but the product CaF2 is easier to handle under the reaction conditions (heat to 50°C above the melting point of the element in an argon atmosphere). Excess calcium is removed from the reaction mixture under vacuum.

Dysprosium isotopes Read more »

Many of the Dy isotopes have been the subject of physics research. Dy-156 has been used to study double electron capture while Dy-160 has been used in research to investigate its multitude of excited states. Dy-161 spectroscopy has been used to determine the properties of Dy based superconductor material. Dy-162 has been used to study excited states in deformed nuclei. Dy-164 has two medical applications. It is used in the production of Dy-165 which is used in arthritis therapy. Dy-164 is also used for the production of Dy-166 which decays to Ho-166 and this used in cancer therapy. The Dy-164 to Ho-166 route gives the advantage of generating so-called carrier free material.

Table. Stables isotopes of dysprosium.
Isotope Mass
(atom %)
spin (I)
moment (μ/μN)
156Dy 155.924277 (8) 0.06 (1) 0
158Dy 157.924403 (5) 0.10 (1) 0
160Dy 159.925193 (4) 2.34 (8) 0
161Dy 160.926930 (4) 18.91 (24) 5/2 -0.4806
162Dy 161.926795 (4) 25.51 (26) 0
163Dy 162.928728 (4) 24.90 (16) 5/2 0.6726
164Dy 163.929171 (4) 28.18 (37) 0

WebElements chemistry shop

You can buy periodic table posters, mugs, T-shirts, periodic table fridge magnets, games, molecular models, and more at the WebElements periodic table shop