Periodic Table

Spectroscopy of element 115 decay chains

The full document is not yet published but a paper accepted 7 Aug 2013 entitled Spectroscopy of element 115 decay chains by D. Rudolph et al. provides additional evidence for element 115:

A high-resolution $\alpha$, $X$-ray and $\gamma$-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum f\"ur Schwerionenforschung. Thirty correlated $\alpha$-decay chains were detected following the fusion-evaporation reaction $^{48}$Ca~+~$^{243}$Am. The observations are consistent with previous assignments of similar decay chains to originate from element $Z=115$. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements $Z>112$. Comprehensive Monte-Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

Periodic Table in iced biscuits

Periodic Table in iced biscuits

Emma and Katie make the periodic table in iced biscuits as refreshments for a reception following a lecture on fireworks at The University of Sheffield.

Element number 114: flerovium (symbol Fl) and element number 116: livermorium (symbol Lv)

The International Union of Pure and Applied Chemistry (IUPAC) has recommended names for elements 114 and 116. Scientists from the Lawrence Livermore National Laboratory (LLNL) and at Dubna proposed the names as Flerovium for element 114 and Livermorium for element 116.

Flerovium (atomic symbol Fl) was chosen to honor Flerov Laboratory of Nuclear Reactions, where superheavy elements, including element 114, were synthesized. Georgiy N. Flerov (1913-1990) was a renowned physicist who discovered the spontaneous fission of uranium and was a pioneer in heavy-ion physics. He is the founder of the Joint Institute for Nuclear Research. In 1991, the laboratory was named after Flerov - Flerov Laboratory of Nuclear Reactions (FLNR).

Livermorium (atomic symbol Lv) was chosen to honor Lawrence Livermore National Laboratory (LLNL) and the city of Livermore, Calif. A group of researchers from the Laboratory, along with scientists at the Flerov Laboratory of Nuclear Reactions, participated in the work carried out in Dubna on the synthesis of superheavy elements, including element 116. (Lawrencium -- Element 103 -- was already named for LLNL's founder E.O. Lawrence.)

In 1989, Flerov and Ken Hulet (1926-2010) of LLNL established collaboration between scientists at LLNL and scientists at FLNR; one of the results of this long-standing collaboration was the synthesis of elements 114 and 116.

The creation of elements 116 and 114 involved smashing calcium ions (with 20 protons each) into a curium target (96 protons) to create element 116. Element 116 decayed almost immediately into element 114. The scientists also created element 114 separately by replacing curium with a plutonium target (94 protons).

The creation of elements 114 and 116 generate hope that the team is on its way to the "island of stability," an area of the periodic table in which new heavy elements would be stable or last long enough for applications to be found.

The new names were submitted to the IUPAC in late October. The new names will not be official until about five months from now when the public comment period is over.

Periodic Table QR-coded

Periodic Table QR-coded

Periodic Table QR QR-coded

Printable periodic table: QR-coded

Attached find a printable QR-coded periodic table with links to online periodic table data. QR codes are 2-dimensional bar codes readable by, for instance, some Apps on iPhones and others.

Print on a big a piece of paper as possible, otherwise your QR reader may pick up an element you didn't intend.

Periodic Table QR-coded: Periodic Table QR-codedPeriodic Table QR-coded: Periodic Table QR-coded

Version history
1.1: 15 September 2011
1.0: 17 July 2011

Synthesis of a new element with atomic number Z=117

A paper has just been accepted (5 April 2010) for publication in Physical Review Letters.1

International team discovers element 117

A new chemical element has been added to the Periodic Table: A paper on the discovery of element 117 has been accepted for publication in Physical Review Letters.

Oak Ridge National Laboratory is part of a team that includes the Joint Institute of Nuclear Research (Dubna, Russia), the Research Institute for Advanced Reactors (Dimitrovgrad), Lawrence Livermore National Laboratory, Vanderbilt University and the University of Nevada Las Vegas. ORNL's role included production of the berkelium-249 isotope necessary for the target, which was subjected to an extended, months-long run at the heavy ion accelerator facility at Dubna, Russia.

"Without the berkelium target, there could have been no experiment," says ORNL Director of Strategic Capabilities Jim Roberto, who is a principal author on the PRL paper and who helped initiate the experiment. The berkelium was produced at the High Flux Isotope Reactor and processed at the adjoining Radiochemical Engineering & Development Laboratory as part of the most recent campaign to produce californium-252, a radioisotope widely used in industry and medicine.

"Russia had proposed this experiment in 2004, but since we had no californium production at the time, we couldn't supply the berkelium. With the initiation of californium production in 2008, we were able to implement a collaboration," Roberto says.
Professor Joe Hamilton of Vanderbilt University (who helped establish the Joint Institute for Heavy Ion Research at ORNL) introduced Roberto to Yuri Oganessian of Russia's JINR. Five months of the Dubna JINR U400 accelerator's calcium-48 beam - one of the world's most powerful - was dedicated to the project.

The massive effort identified a total of six atoms of element 117 and the critical reams of data that substantiate their existence.
The two-year experimental campaign began with a 250-day irradiation in HFIR, producing 22 milligrams of berkelium-249, which has a 320-day half-life. The irradiation was followed by 90 days of processing at REDC to separate and purify the berkelium. The Bk-249 target was prepared at Dimitrovgrad and then bombarded for 150 days at the Dubna facility. Lawrence Livermore, which now has been involved in the discovery of six elements with Dubna (113, 114, 115, 116, 117, and 118), contributed data analysis, and the entire team was involved in the assessment of the results.

This is the second element that ORNL has had a role in discovering, joining element 61, promethium, which was discovered at the Graphite Reactor during the Manhattan project and reported in 1946. ORNL, by way of its production of radioisotopes for research, has contributed to the discovery of a total of seven new elements.

Members of the ORNL team include the Physics Division's Krzysztof Rykaczewsi, Porter Bailey of the Nonreactor Nuclear Facilities Division, and Dennis Benker, Julie Ezold, Curtis Porter and Frank Riley of the Nuclear S&T Division. Roberto says the success of the element-117 campaign underscores the value of international collaborations in science.
"This use of ORNL isotopes and Russian accelerators is a tremendous example of the value of working together," he says. "The 117 experiment paired one of the world's leading research reactors--capable of producing the berkelium target material--with the exceptional heavy ion accelerator and detection capabilities at Dubna."

Islands of Stability

Roberto also says the experiment, in addition to discovering a new chemical element, has pushed the Periodic Table further into the neutron-rich regime for heaviest elements. "New isotopes observed in these experiments continue a trend toward higher lifetimes for increased neutron numbers, providing evidence for the proposed "island of stability" for super-heavy nuclei," he says. "Because the half-lives are getting longer, there is potential to study the chemistry of these nuclei," Roberto says. "These experiments and discoveries essentially open new frontiers of chemistry."

—Bill Cabage

The news about the claim was announced in a press release from the Oak Ridge National Laboratory.

WebElements: the periodic table on the WWW []

Copyright 1993-2015 Mark Winter [The University of Sheffield and WebElements Ltd, UK]. All rights reserved.