Probable observation of a supersolid helium phase

TitleProbable observation of a supersolid helium phase
Publication TypeJournal Article
Year of Publication2004
AuthorsKim, E., and Chan M. H. W.
Refereed DesignationRefereed
JournalNature
Volume427
Issue6971
Pagination225 - 227
Date Published1/2004
ISSN1476-4679
Keywordshelium, supersolid
DOI10.1038/nature02220
Short TitleNature
Citation Key157
Full Text

Abstract: When liquid 4He is cooled below 2.176 K, it undergoes a phase transition—Bose–Einstein condensation—and becomes a super- fluid with zero viscosity. Once in such a state, it can flow without dissipation even through pores of atomic dimensions. Although it is intuitive to associate superflow only with the liquid phase, it has been proposed theoretically that superflow can also occur in the solid phase of 4He. Owing to quantum mechanical fluctuations, delocalized vacancies and defects are expected to be present in crystalline solid 4He, even in the limit of zero temperature. These zero-point vacancies can in principle allow the appearance of superfluidity in the solid. However, in spite of many attempts, such a 'supersolid' phase has yet to be observed in bulk solid 4He. Here we report torsional oscillator measurements on solid helium confined in a porous medium, a configuration that is likely to be more heavily populated with vacancies than bulk helium. We find an abrupt drop in the rotational inertia5 of the confined solid below a certain critical temperature. The most likely interpretation of the inertia drop is entry into the supersolid phase. If confirmed, our results show that all three states of matter—gas, liquid and solid—can undergo Bose–Einstein condensation.

WebElements: the periodic table on the WWW [http://www.webelements.com/]

Copyright 1993-2011 Mark Winter [The University of Sheffield and WebElements Ltd, UK]. All rights reserved.