Flexible nanomembranes

Workers at The University of Wisconsin-Madison in the USA have managed to release thin membranes of semiconductors from a substrate and transfer them to new surfaces. The freed membranes which are just tens of nanometers thick retain all the properties of silicon in wafer form but the nanomembranes are flexible. By varying the thicknesses of the silicon and silicon-germanium layers composing them, membrane shapes are possible ranging from flat to curved to tubular.

Potential applications include flexible electronic devices, faster transistors, nano-size photonic crystals that steer light, and lightweight sensors for detecting toxins in the environment or biological events in cells.

The scientists made a three-layer nanomembrane composed of a thin silicon-germanium layer sandwiched between two silicon layers of similar thinness. The membrane sat upon a silicon dioxide layer in a silicon-on-insulator substrate. The nanomembranes may be etched away from the oxide layer with hydrofluoric acid.

Although the Wisconsin team grew their nanomembranes on silicon-on-insulator substrates, the method should apply to many substances beyond semiconductors, such as ferroelectric and piezoelectric materials. The key requirement is a layer, like an oxide, that can be removed to free the nanomembranes.1

WebElements: the periodic table on the WWW [http://www.webelements.com/]

Copyright 1993-2015 Mark Winter [The University of Sheffield and WebElements Ltd, UK]. All rights reserved.