Iron

Isotope Pattern Calculator


Notes

  • Please test this and leave feedback
  • The results will come out with the most intense line set to 100%. This is standard practice in mass spectrometry and is not an error!
  • The formula is case sensitive. So h2o will fail but H2O will work
  • Correctly nested brackets [{()}] are OK: so [Mo(CO)4{P(OCH3)3}2] will work for instance
  • Compound names and element names such as water or iron are not OK

Nobel Prize 2007 for chemistry

Modern surface chemistry – fuel cells, artificial fertilizers and clean exhaust

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry for 2007 to Gerhard Ertl of the Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany "for his studies of chemical processes on solid surfaces".

The Nobel Prize in Chemistry for 2007 is awarded for groundbreaking studies in surface chemistry. This science is important for the chemical industry and can help us to understand such varied processes as why iron rusts, how fuel cells function and how the catalysts in our cars work. Chemical reactions on catalytic surfaces play a vital role in many industrial operations, such as the production of artificial fertilizers. Surface chemistry can even explain the destruction of the ozone layer, as vital steps in the reaction actually take place on the surfaces of small crystals of ice in the stratosphere. The semiconductor industry is yet another area that depends on knowledge of surface chemistry.

It was thanks to processes developed in the semiconductor industry that the modern science of surface chemistry began to emerge in the 1960s. Gerhard Ertl was one of the first to see the potential of these new techniques. Step by step he has created a methodology for surface chemistry by demonstrating how different experimental procedures can be used to provide a complete picture of a surface reaction. This science requires advanced high-vacuum experimental equipment as the aim is to observe how individual layers of atoms and molecules behave on the extremely pure surface of a metal, for instance. It must therefore be possible to determine exactly which element is admitted to the system. Contamination could jeopardize all the measurements. Acquiring a complete picture of the reaction requires great precision and a combination of many different experimental techniques.

Gerhard Ertl has founded an experimental school of thought by showing how reliable results can be attained in this difficult area of research. His insights have provided the scientific basis of modern surface chemistry: his method-ology is used in both academic research and the indust-rial development of chemical processes. The approach developed by Ertl is based not least on his studies of the Haber-Bosch process, in which nitrogen is extracted from the air for inclusion in artificial fertilizers. This reaction, which functions using an iron surface as its catalyst, has enormous economic significance because the availability of nitrogen for growing plants is often restricted. Ertl has also studied the oxidation of carbon monoxide on platinum, a reaction that takes place in the catalyst of cars to clean exhaust emissions.

Gallium Trojan horse strategy defeats drug-resistant bacteria

An article in the Journal of Clinical Investigation outlines how a new antimicrobial approach kills bacteria in laboratory experiments and eliminate life-threatening infections in mice by interfering with a key bacterial nutrient. Iron is critical for the growth of bacteria and for their ability to form biofilms, slime-encased colonies of microbes that cause many chronic infections. "Gallium acts as a Trojan horse to iron-seeking bacteria," said Pradeep Singh (senior author). "Because gallium looks like iron, invading bacteria are tricked, in a way, into taking it up. Unfortunately for the bacteria, gallium can't function like iron once it's inside bacterial cells."

The work is by by workers from the University of Iowa and the University of Cincinnati. Rather than trying to find agents that best killed bacteria in test tubes, the researchers sought to intensify the stress imposed on microbes by one of the body's own defense mechanisms. The study's senior author Singh explained "The competition for iron is critical in the struggle between bacteria and host. The body has potent defense mechanisms to keep iron away from infecting organisms, and invaders must steal some if they are to survive."

"Because iron is so important in infection, we thought infecting bacteria might be vulnerable to interventions that target iron," explained Yukihiro Kaneko, senior fellow in microbiology at the UW and the study's lead author. To accomplish this, the researchers used gallium, a metal related in some ways to iron.

The researchers showed that gallium killed microbes, and prevented the formation of biofilms. Importantly, gallium's action was intensified in low iron condition, like those that exist in the human body. Gallium was even effective against strains of Pseudomonas aeruginosa from cystic fibrosis patients that were resistant to multiple antibiotics. In mice, gallium treatment blocked both chronic and acute infections caused by this bacterium. The idea of using gallium as a substitute for iron was developed by a group led by Bradley Britigan, a researcher at the University of Cincinnati and a co-author on this study.

Go to work on a terbium nitride buckyegg

BuckyEggBuckyEggAn egg-shaped fullerene, or "buckyball egg" has been made and characterized by chemists in America at UC Davis (California), Virginia Tech, and Emory and Henry College in Virginia. They were trying to encapsulate terbium atoms within fullerenes but instead encapsulated terbium nitride within an egg-shaped fullerene.1

The compound Tb3N@C84 was synthesized using an arc-discharge generator by vaporizing composite graphite rods containing a mixture of Tb4O7, graphite, and iron nitride as catalyst in a low-pressure He/N2atmosphere. This gave a complex mixture of products and chromatography gave seven terbium-containing fractions, the fourth fraction of which contained two isomers of Tb3N@C84. Crystallographc studies show the compound from one angle in particular seems very egg shaped! Remarkable! The Tb3N unit is clearly visible (terbium in green and nitrogen in blue).

Until the publication of this work it was normally accepted that no two pentagons can touch in a fullerene and are always surrounded by hexagons. However in this case there are two pentagons (the 8 atoms at the pointy part of the egg at the top of the attached image) linked as a bent pentalene fragment.

WebElements: the periodic table on the WWW [http://www.webelements.com/]

Copyright 1993-2011 Mark Winter [The University of Sheffield and WebElements Ltd, UK]. All rights reserved.