Education

Ideal Gas Law Simulation

Merlot chemistry - 20 August, 2014 - 15:54
An effective tool to help students learn about all aspects of the ideal gas law. One of the best web gas law simulations.
Categories: Education

Assessing Blood Pressure

Merlot chemistry - 20 August, 2014 - 15:54
This learning module presents the proper technique and common errors associated with assessment of blood pressure. The information is targeted at new learners in the clinical and health sciences and can serve as a review for current practitioners. The program includes audio of blood pressure sounds, interactive simulations, and self-assessment tools.
Categories: Education

DNA from the Beginning

Merlot chemistry - 20 August, 2014 - 15:54
DNA from the Beginning is an animated tutorial on DNA, genes and heredity. The science behind each concept is explained using animations related to DNA topics, an image gallery, video interviews, problems, biographies, and links related to DNA. There are three sections, Classical Genetics, Molecules of Genetics and Organization of Genetic Material. Key features are the clear explanations of classical experiments and the excellent photographs of researchers and their labs.For information and credits on the development of DNA from the Beginning, go to http://www.dnaftb.org/dnaftb/credits.html
Categories: Education

VR Molecules

Merlot chemistry - 20 August, 2014 - 15:54
VR Molecules presents dynamically and interactively the vibration and rotation modes for 24 molecules (out of a more extensive list) containing up to twelve atoms. It allows the user to create and save on his or her hard disk documents containing, much in the same way as Power Point presentations, up to 10 "pages״, each featuring one or two molecules with specific parameters (viewpoint, active modes, etc.). These presentations can be made available through the Internet, with optional sound and text explanations associated with each page.The latest, augmented version of VR Molecules, called VR Molecules Pro 1.1, is available online as well as in a stand-alone version (Mac and Windows). To view a video of the award winning author, go to View VR Molecules - Chemistry Award Winner 2007 video VR Molécules est un logiciel de simulation (en ligne et en mode local) permettant de visualiser et d'explorer les modes de vibration et de rotation des molécules (24 molécules sont disponibles). Il peut tout aussi bien être utilisé par le professeur pour préparer des démonstrations en classe, intégrer des animations (interactives ou non) dans ses documents HTML, que par les étudiants pour revoir les démonstrations présentées en classe et explorer par eux-mêmes la vibration et la rotation des molécules.La plus récente version (1.12) de VR Molécules, est accessible en deux versions : en ligne et en mode local (à télécharger, pour Mac et Windows).
Categories: Education

Neuroscience for Kids

Merlot chemistry - 20 August, 2014 - 15:54
The entry point to an extensive site concerning the nervous system and neuroscience. The site includes descriptive materials, experiments, activities, links to articles, resources for teaching neuroscience, and a listing of Internet resources related to the neurosciences.
Categories: Education

Virtual Chemistry Laboratory

Merlot chemistry - 20 August, 2014 - 15:54
Here's your chance to mix chemicals without wearing safety goggles. You won't spill any acid on the spectrometer in this lab. Choose solutions from the vast database and mix 'em together till the cloned cows come home. Marvel as the chemical solutions react in real time.
Categories: Education

PhET - Physics Education Technology at the University of Colorado

Merlot chemistry - 20 August, 2014 - 15:54
A collection of simulations and virtual labs focusing on first-year college physics. An interview with the award winning author can be found in About us at Phet VideoPhET provides fun, interactive, research-based simulations of physical phenomena for free. We believe that our research-based approach- incorporating findings from prior research and our own testing- enables students to make connections between real-life phenomena and the underlying science, deepening their understanding and appreciation of the physical world. To help students visually comprehend concepts, PhET simulations animate what is invisible to the eye through the use of graphics and intuitive controls such as click-and-drag manipulation, sliders and radio buttons. In order to further encourage quantitative exploration, the simulations also offer measurement instruments including rulers, stop-watches, voltmeters and thermometers. As the user manipulates these interactive tools, responses are immediately animated thus effectively illustrating cause-and-effect relationships as well as multiple linked representations (motion of the objects, graphs, number readouts, etc.) PhET Interactive Simulations, University of Colorado, http://phet.colorado.edu
Categories: Education

Physlets

Merlot chemistry - 20 August, 2014 - 15:54
Educational physics applets designed to be scripted in JavaScript for use in quizzes, homework problems, and Just in Time Teaching activities. Includes applets that can be used in a wide range of classes and at different levels.
Categories: Education

Music Acoustics

Merlot chemistry - 20 August, 2014 - 15:54
The acoustics of musical instruments and the voice. The "Basics" directory introduces and explains general concepts. There are "Introduction to the Acoustics of [instrument name]״, data bases, technical material, web services (including a hearing test) and a FAQ.
Categories: Education

MecMovies

Merlot chemistry - 20 August, 2014 - 15:54
MecMovies is an extensive collection of examples, theory, and games designed to complement the entire Mechanics of Materials course. The software features impressive graphics and animation that are highly effective in visually communicating course concepts to students. Special emphasis is placed on developing the learner?s understanding and proficiency in basic concepts and skills through interactive exercises and games. Classroom implementation of the software has produced improved student performance and more positive student attitudes regarding the Mechanics of Materials course. To see a video with the award winning author, go to View MecMovies video
Categories: Education

Academic family: Sir William Ramsay

Chemistry World blog (RSC) - 14 August, 2014 - 16:46

Guest post by Jessica Breen

‘The noblest exercise of the mind within doors, and most befitting a person of quality, is study’ – Ramsay

A few years ago I had the pleasure of meeting Jack Dunitz at the Swiss Federal Institute of Technology (ETH) in Zurich. Little did I know that he was the academic great-great-grandson of the UK’s first chemistry Nobel Laureate, Sir William Ramsay. After discovering this connection, I decided to delve deeper to see which other chemistry legends Ramsay is connected to.

Ramsay began his career as an organic chemist, but his prominent discoveries were in the field of inorganic chemistry. At the meeting of the British Association in August 1894, Ramsay and Lord Rayleigh both announced the discovery of argon, after independent research. Ramsay then discovered helium in 1895 and systematically researched the missing links in this new group of elements to find neon, krypton, and xenon1. These findings led to Ramsay winning his Nobel prize in 1904 in ‘recognition of his services in the discovery of the inert gaseous elements in air, and his determination of their place in the periodic system’.

Ramsay worked with a wide range of chemists before winning his Nobel prize. At the start of his career Ramsay worked with Rudolf Fittig in Tübingen, Germany. Fittig, a successful organic chemist, is particularly known for discovering the pinacol coupling reaction. Ramsay’s noteworthy academic brothers via Fittig are Ira Remsen and Theodor Zincke. Remsen is recognised for contributing to the discovery of the first artificial sweetener: his co-worker, Constantin Fahlberg, accidentally discovered Saccharin by failing lab etiquette 101 – not washing his hands after a day working in the laboratory.2 On the other hand, Zincke is most famous for supervising the father of nuclear chemistry, Otto Hahn, who claimed the Nobel prize in chemistry (1944) ‘for his discovery of the fission of heavy nuclei’.3 This makes Ramsay the academic uncle of Hahn.

As well as academic brothers and nephews, Ramsay’s direct academic descendants have also achieved greatness. Frederick Soddy, Ramsay’s academic son, carried out research into radioactivity and proved the existence of isotopes, for which he won the 1921 Nobel Prize in chemistry.4 Unfortunately for the chemistry community, Soddy’s interests diverted to economics and politics, so he has no prominent academic offspring to speak of. Interestingly, he also has a lunar crater named after him! Other chemistry Nobel prize-winning descendants of Ramsay include the two-time winner, Frederick Sanger (1958, 1980), and Barry Sharpless (2001), who are both his academic great-great-grandsons. Ramsay also has more diverse Nobel prize winners in his family tree, with two winners for physiology or medicine: Har Gobind Khorana (1968) and Konrad Bloch (1964).

This summary of Ramsay’s academic family is by no means the complete list, but this does demonstrate that one great chemist can have an enormous effect on the generations of chemists to come. As you can see, Nobel prize winners seem to have excellent academic dynasties, but perhaps it isn’t the fact that their mentor won a Nobel prize that inspired them to greatness but their work ethic and abstract way of thinking.

In future posts we will look at other Nobel prize winners and the effect that they may have had on their academic offspring. If there is a particular winner that you would like to see featured, you can contact me on Twitter (@Jessthechemist).

 

References

1: Sir William Ramsay – BiographicalNobelprize.org. Nobel Media AB 2013. Web. 6 Jan 2014.

2: Chemical Heritage Magazine ‘the persuit of sweet:a history of saccharin’

3: Otto Hahn – Biographical. Nobelprize.org. Nobel Media AB 2013. Web. 6 Jan 2014.

4: Frederick Soddy – Biographical. Nobelprize.org. Nobel Media AB 2013. Web. 7 Jan 2014.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

Meet our guest bloggers – Jessica Breen

Chemistry World blog (RSC) - 14 August, 2014 - 16:24

I am a postdoctoral fellow at the Institute of Process Research and Development (iPRD) at the University of Leeds. My research is on the synthesis of chiral amines relevant to the pharmaceutical industry but I have a general interest in organic chemistry, catalysis and sustainable methodologies. When I am not in the lab, I blog at The Organic Solution on a range of topics including chemical research, postdoc life and outreach experiences. Recently, I have become interested in the connection between chemists across the globe which has led me to create an academic twitter tree.

To continue this academic tree theme, this blog will explore certain strands of the chemistry Nobel Laureate family tree using the Royal Society of Chemistry’s Chemical Connections. The blog will delve into the life and heritage of different chemistry Nobel Laureates and, amongst other things, we shall find out if having a Nobel winner in your lineage could have an effect on your career, for example, does having a Nobel winner in your ancestry mean you are more likely to achieve academic greatness? If there is a Nobel winner that you would like to see featured, please get in touch.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

Tales of the abandoned glassware

Chemistry World blog (RSC) - 7 August, 2014 - 12:21

Guest post by Heather Cassell

Mysteriously abandoned?
©iStock

I love working in the lab. I’m happiest when I’m pottering about among the bottles and the beakers getting on with my work. Most of my experience has been in multi-group labs of varying sizes; all have generally been good fun to work in, with lots of people to talk to who each have different skills and experiences. This can be very useful when you need any help, especially when you are learning new techniques.

One thing you can rely on happening in the lab at some point, especially a large lab used by many groups, is the appearance of Mysteriously Abandoned Glassware. Usually the bottle, beaker, or flask is unlabelled. If you’re lucky enough to have a label, it’s guaranteed to be so faded you can’t read it. Sometimes the glassware contains a colourless liquid; other times a crystalline material, evidence of the previous presence of now long lost liquid. A common variation of the Mysteriously Abandoned Glassware is the flask/beaker of something that has had Virkon (a pink disinfectant) added to it and left in the sink, again with no label in sight to point us to the perpetrator. Over time, the pink Virkon discolours, but the glassware remains Mysteriously Abandoned.

Over the years, I have realised I have a fairly low mess tolerance (compared to the other people I work with), at least in the lab; my office desk is another matter! I like a clean and tidy bench to work on and the same goes for communal areas, so while others are happy to ignore the things that have been left, I find myself doing something about it. I’m always the one tidying up as I am waiting for the centrifuge to run, or doing other lab jobs (filling up hand towels, checking stock levels, emptying disposal bins…). In the case of Mysteriously Abandoned Glassware, I end up trying to find the owner (often a mystery) then trying to work out what it is.

More often than not, the solution is something fairly innocuous like a buffer (Tris or PBS), which we dilute from concentrated stocks, or an alcohol (ethanol or methanol). After I’ve worked out what it is and how to dispose of it, I’ll send the glassware to be washed or do it myself. Within hours, you can guarantee that someone will come and say, ‘have you seen my [insert common solvent here]? I left it somewhere…’ The lab will stay reasonably tidy for a few days or maybe even a few blissful weeks, before another piece of Mysteriously Abandoned Glassware materialises and the cycle continues.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

Meet our guest bloggers – Heather Cassell

Chemistry World blog (RSC) - 7 August, 2014 - 12:09

I’m Heather Cassell (née Stubley). I did a BSc in biochemistry and genetics at the University of Leeds, then I moved to the University of York where I did an MRes in biomolecular sciences followed by a PhD investigating enzyme activity in non-aqueous solvents. I am currently finishing my first postdoc position working as a research fellow in molecular and cell biology at the University of Surrey. The project involves cloning proteins of interest and attaching them to polymers or other nanoparticles then assessing their toxicity and cellular location in liver related cell lines.

I decided to write a ‘life in the lab’ blog strand because I love working as a scientist, especially the time spent in the lab itself – despite the many challenges. It gives me a chance to share my enthusiasm for working as a researcher and all things science-related. I plan to give an early career scientist’s view of life in the lab, balancing work and childcare, procrastination and productivity, research and recreation.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

The discovery of Buckyballs

Chemistry World blog (RSC) - 31 July, 2014 - 16:31

Guest post by Rowena Fletcher-Wood

Among the many accidental discoveries through the ages is an experiment designed to probe carbon molecules in space, which unearthed a new terrestrial molecule.

Harry Kroto with buckyballs
© Science Photo Library

It all happened in an 11-day whirl, between 1 September 1985, when Harry Kroto first arrived at Rice University, US, and 12 September, when he, along with Richard Smalley and Robert Curl, submitted a paper to Nature: C60 Buckminsterfullerene’. Eleven years later, in 1996, the three were awarded the Nobel prize for chemistry.


Indeed, a Nobel prize may have been some consolation to Smalley and Curl, who were initially reluctant to delay their research on silicon and germanium semiconductors to let Kroto play with carbon. Kroto was exploring a completely different area of research: cyanopolyynes, alternating C–N chains detected in interstellar space using radiotelescopes. Although the evidence for their existence was good, the origin of these compounds was still unknown. Kroto postulated that they may form in the vicinity of red giants, and wanted to use Smalley’s laser-generated supersonic cluster beam to recreate this high-heat atmosphere and uncover mechanisms for their formation.

After agreeing to let Kroto use the apparatus, the three scientists, helped by graduate students James Heath, Sean O’Brien and Yuan Liu, loaded a graphite disk onto the beamline in a helium chamber and vaporised it into a plasma at temperatures exceeding the surface temperatures of most stars. Under high pressure helium, the vapour cooled and condensed, forming new interatomic bonds and aligning into different-sized clusters, which were immediately pulse ionised and swept into a mass spectrometer for analysis.

First, the students found Kroto’s expected carbon snakes, but then they noticed a distinct peak at C = 60 and a smaller one at C = 70. The abundance of C60, and increasing yield under higher pressure conditions suggested a very stable, closed-shell macromolecule. Unlike Kekulé’s benzene ring, buckminsterfullerene was not identified through dreaming, but through the resourceful application of sticky tape and cardboard cut outs. The model was proposed: a truncated icosahedron, consisting of twenty hexagons and twelve pentagons, like a carbon football. The name, buckminsterfullerene, was inspired by the architect famous for his similar-looking geodesic domes.

Since then, enthusiastic exploration into other fullerene allotropes has revealed that we could have accidentally discovered buckyballs long ago using much lower-tech equipment: a burning candle produces buckyballs in its soot by vaporising wax molecules. Not only that, but buckyballs occur in geological formations on Earth and, since 2010, have been detected in cosmic dust clouds. The ball-like carbon molecule wasn’t even a new idea: between 1970 and 1973, three independent research groups led by Eiji Osawa of Toyohashi University of Technology, R W Henson of the Atomic Energy Research Establishment, and D A Bochvar of the USSR, predicted the existence of the C60 molecule and calculated its stability. However, their work was purely theoretical, and didn’t get the attention it deserved. Buckyballs were discovered, rather than made, so perhaps it’s not surprising that they were found by accident: more surprising is that that weren’t found before.

 

References:

The Chemical Heritage Foundation – Richard E. Smalley, Robert F. Curl, Jr., and Harold W. Kroto

Press release – The Nobel Prize in Chemistry 1996: Robert F. Curl Jr., Sir Harold Kroto, Richard E. Smalley

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

Meet our guest bloggers – Rowena Fletcher-Wood

Chemistry World blog (RSC) - 31 July, 2014 - 16:11

I am a keen science communicator, a doctoral researcher in materials chemistry at the University of Birmingham and a climbing instructor.

Most of all, I like telling stories.

When I climb, I learn to fall. When I do chemistry, I learn to look for the unexpected. I have to agree with Einstein: researchers don’t know what they’re doing, that’s what makes it research – we’re fumbling around in the dark waiting for accidents to happen, and hopefully yield good results. Some of the things we see and use every day were discovered purely by accident – some of the things I will be writing about here.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

July 2014: R.Science

Royal Society R.Science - 31 July, 2014 - 13:41

This podcast from the Royal Society has moved.

Please resubscribe to the podcast here:
http://rss.royalsociety.org/podcasts/rscience

Thank you for continuing to subscribe to our updates.
If you have any queries please contact us.

Categories: Education

Journal cover art that will brighten your day

Chemistry World blog (RSC) - 24 July, 2014 - 16:22

Guest post from Tom Branson

After browsing the recent chemical literature, I have finally found enlightenment. I have quite simply been left in a trance after witnessing a recent cover from Chemical Society Reviews.

A colour explosion

There’s so much colour in this image I just don’t know where to begin. So let’s start by taking a look at that green globe. Surely a prophecy of a future world when green chemistry has finally paid off and this development also seems to have led to a plethora of plant life sprouting from the Earth. Holding that planet aloft are two pairs of caring hands. An adult gently holds a child’s tiny hands and together they embrace this new future. Peace and love and chemistry, what more could you ask for?

And what about that background? Wow, they didn’t hold back with the colour palette. With some journals still charging for colour figures I bet these guys always get their money’s worth.

So there are adult hands, clasping a child’s hands, supporting the world, sprouting a bouquet of flowers, in front of a mega-rainbow, oh it’s almost enough to make me quit science and run off to join a cult.

Seriously though, the cover is a wonderful attempt to highlight sustainability and forward thinking, something that is sadly all too often lacking in modern society. The author of the paper, Jinlong Gong of Tianjin University, China, tells me of his hope that ‘this cover can call up the attention of people to consider more about the future of our world’. Nicely said.

There are not really many clues in the image as to what the published science is about but the keen eyed among you may have spotted a few water droplets on the plant leaves. Was the printer simply too close to the water cooler at Chem. Soc. Rev. headquarters, or is this paper all about solar water splitting? Aha, the latter of course.

Photocatalysis

The cover art is for a review article about a really promising solution for solar energy; tantalum-based semiconductors. Visible light can be absorbed by these semiconductors and used in solar water splitting, converting solar energy into chemical energy. The team from China highlight that while this type of photocatalyst is still far away from use in practical applications, improvements in the efficiency and stability of these systems give hope to the tantalum-based community.

Those wanting to know more about this tantal(um)ising hope for the future can access the article over at Chem. Soc. Rev.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

Meet our guest bloggers – Tom Branson

Chemistry World blog (RSC) - 24 July, 2014 - 16:00

I recently completed my PhD at The University of Leeds where I was investigating protein-carbohydrate interactions and protein assembly. I’m a synthetic biologist now working on biomolecular interactions, based in The Netherlands. I also blog about science communication issues and chemistry trivia over at Chemically Cultured.

Here at Chemistry World, I will be writing a regular blog series to highlight some of the best academic journal covers – the images that grace the front of those magazines we all paw through. Many of you might think that academic journals are a place where only serious facts and tables of data find their home, but, at the very start of many journals lies an artistic outburst.

These journal covers are a great place for researchers to highlight their work and at the same time, show off their artistic skills. Many covers have caught my eye over the years and they deserve to be promoted for the talent and, more than often, eccentricities that show in these designs. Imagination, creativity and communication are core principles in the world of science and all this comes to the fore on the front cover of our favourite periodicals.

 

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

YMS winners

Chemistry World blog (RSC) - 10 July, 2014 - 14:50

The Royal Society of Chemistry’s 3rd Younger Members Symposium (YMS2014) was held towards the end of June at the University of Birmingham. Kicking off the day was Lesley Yellowlees who gave an inspirational plenary lecture covering her research and career path, in one of her final acts as RSC president. ‘Aspire to be the president of the Royal Society of Chemistry – it’s the best job ever,’ she told the audience. She also shared lessons she had learned over the years including: develop your own style, grasp opportunities and find ways of dealing with difficult colleagues.

Jamie Gallagher, the University of Glasgow’s public engagement officer, energised everyone after lunch by talking about his work and why public engagement makes you a better academic. Public engagement doesn’t necessarily have to involve standing on a stage like Jamie does on a regular basis. He gave some fantastic advice on the many schemes and organisations to get involved with such as Cafe Scientifique and your local RSC section.

Both excellent talks but the real meat of the day was comprised of poster sessions and seminars where attendees shared and quizzed each other on their research. Chemistry World was delighted to sponsor its first ever poster prizes in the inorganic and materials category. And the winners were…

First prize went to Giulia Bignami from the University of St Andrews.

Giulia Bignami: ‘The research work described in my poster focuses on the synthesis, according to the assembly-disassembly-organisation-reassembly (ADOR) method, of 17O-enriched UTL-derived zeolitic frameworks and their subsequent characterisation through 17O and 29Si solid-state NMR, involving both 1D and 2D spectral techniques, in magnetic fields ranging from 9.4T to 20.0T. We showed how 17O and 29Si NMR-based structural investigation proves extremely helpful to gain insights into the synthetic process employed, thus shedding light on the way new and targeted zeolitic structures could be achieved.’

Second prize went to Gurpreet Singh from the University of Central Lancashire.

Gurpreet Singh: ‘The aim of the research is to find new ion exchange materials for use in the nuclear industry. The problem with some of the current ion-exchange materials is that they are not stable to the conditions found in the waste pools at nuclear sites. Zirconium phosphates have been proposed to be more stable and by doping other metals into the structure in place of zirconium it might be possible to create new materials which have increase selectivity for the cations of interest (strontium and caesium). The work presented shows that yttrium can be successfully introduced into the structure of alpha-zirconium phosphate and the ion-exchange experiments are on-going.’

Third prize went to Daniel Lester for a poster about work he did at the University of Sussex.

Daniel Lester: ‘In the field of VOC (volatile organic compound) degradation by photocatalysis, P25 (powdered TiO2 of 75% anatase 25% rutile composition) is often seen as a benchmark material. However, in the continuous flow reactors used in industry, a powdered catalyst is impractical to use. I therefore aimed to create several supports for TiO2, which not only improved the physical durability of the catalyst but also improved the photocatalytic efficiency. Glass wool acted as a wave guide, TiO2 nanofibres served as photoactive supports and zeolites provided an electron sink to decrease hole-pair recombination and to increase contact time between the active species (TiO2) and the target VOC.’

Congratulations to all of our poster winners and to the organisers for an enjoyable symposium.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

WebElements: the periodic table on the WWW [http://www.webelements.com/]

Copyright 1993-2011 Mark Winter [The University of Sheffield and WebElements Ltd, UK]. All rights reserved.