Education

Ideal Gas Law Simulation

Merlot chemistry - 17 December, 2014 - 20:54
An effective tool to help students learn about all aspects of the ideal gas law. One of the best web gas law simulations.
Categories: Education

Assessing Blood Pressure

Merlot chemistry - 17 December, 2014 - 20:54
This learning module presents the proper technique and common errors associated with assessment of blood pressure. The information is targeted at new learners in the clinical and health sciences and can serve as a review for current practitioners. The program includes audio of blood pressure sounds, interactive simulations, and self-assessment tools.
Categories: Education

DNA from the Beginning

Merlot chemistry - 17 December, 2014 - 20:54
DNA from the Beginning is an animated tutorial on DNA, genes and heredity. The science behind each concept is explained using animations related to DNA topics, an image gallery, video interviews, problems, biographies, and links related to DNA. There are three sections, Classical Genetics, Molecules of Genetics and Organization of Genetic Material. Key features are the clear explanations of classical experiments and the excellent photographs of researchers and their labs.For information and credits on the development of DNA from the Beginning, go to http://www.dnaftb.org/dnaftb/credits.html
Categories: Education

VR Molecules

Merlot chemistry - 17 December, 2014 - 20:54
VR Molecules presents dynamically and interactively the vibration and rotation modes for 24 molecules (out of a more extensive list) containing up to twelve atoms. It allows the user to create and save on his or her hard disk documents containing, much in the same way as Power Point presentations, up to 10 "pages״, each featuring one or two molecules with specific parameters (viewpoint, active modes, etc.). These presentations can be made available through the Internet, with optional sound and text explanations associated with each page.The latest, augmented version of VR Molecules, called VR Molecules Pro 1.1, is available online as well as in a stand-alone version (Mac and Windows). To view a video of the award winning author, go to View VR Molecules - Chemistry Award Winner 2007 video VR Molécules est un logiciel de simulation (en ligne et en mode local) permettant de visualiser et d'explorer les modes de vibration et de rotation des molécules (24 molécules sont disponibles). Il peut tout aussi bien être utilisé par le professeur pour préparer des démonstrations en classe, intégrer des animations (interactives ou non) dans ses documents HTML, que par les étudiants pour revoir les démonstrations présentées en classe et explorer par eux-mêmes la vibration et la rotation des molécules.La plus récente version (1.12) de VR Molécules, est accessible en deux versions : en ligne et en mode local (à télécharger, pour Mac et Windows).
Categories: Education

Neuroscience for Kids

Merlot chemistry - 17 December, 2014 - 20:54
The entry point to an extensive site concerning the nervous system and neuroscience. The site includes descriptive materials, experiments, activities, links to articles, resources for teaching neuroscience, and a listing of Internet resources related to the neurosciences.
Categories: Education

Virtual Chemistry Laboratory

Merlot chemistry - 17 December, 2014 - 20:54
Here's your chance to mix chemicals without wearing safety goggles. You won't spill any acid on the spectrometer in this lab. Choose solutions from the vast database and mix 'em together till the cloned cows come home. Marvel as the chemical solutions react in real time.
Categories: Education

PhET - Physics Education Technology at the University of Colorado

Merlot chemistry - 17 December, 2014 - 20:54
A collection of simulations and virtual labs focusing on first-year college physics. An interview with the award winning author can be found in About us at Phet VideoPhET provides fun, interactive, research-based simulations of physical phenomena for free. We believe that our research-based approach- incorporating findings from prior research and our own testing- enables students to make connections between real-life phenomena and the underlying science, deepening their understanding and appreciation of the physical world. To help students visually comprehend concepts, PhET simulations animate what is invisible to the eye through the use of graphics and intuitive controls such as click-and-drag manipulation, sliders and radio buttons. In order to further encourage quantitative exploration, the simulations also offer measurement instruments including rulers, stop-watches, voltmeters and thermometers. As the user manipulates these interactive tools, responses are immediately animated thus effectively illustrating cause-and-effect relationships as well as multiple linked representations (motion of the objects, graphs, number readouts, etc.) PhET Interactive Simulations, University of Colorado, http://phet.colorado.edu
Categories: Education

Physlets

Merlot chemistry - 17 December, 2014 - 20:54
Educational physics applets designed to be scripted in JavaScript for use in quizzes, homework problems, and Just in Time Teaching activities. Includes applets that can be used in a wide range of classes and at different levels.
Categories: Education

Music Acoustics

Merlot chemistry - 17 December, 2014 - 20:54
The acoustics of musical instruments and the voice. The "Basics" directory introduces and explains general concepts. There are "Introduction to the Acoustics of [instrument name]״, data bases, technical material, web services (including a hearing test) and a FAQ.
Categories: Education

MecMovies

Merlot chemistry - 17 December, 2014 - 20:54
MecMovies is an extensive collection of examples, theory, and games designed to complement the entire Mechanics of Materials course. The software features impressive graphics and animation that are highly effective in visually communicating course concepts to students. Special emphasis is placed on developing the learner?s understanding and proficiency in basic concepts and skills through interactive exercises and games. Classroom implementation of the software has produced improved student performance and more positive student attitudes regarding the Mechanics of Materials course. To see a video with the award winning author, go to View MecMovies video
Categories: Education

Countdown to the 2014 Chemistry World science communication competition

Chemistry World blog (RSC) - 15 December, 2014 - 10:26

Chris Sinclair, whose piece on lasers won the 2012 Chemistry World science communication competition, writes about science and performing arts.

In 2012, I won the first Chemistry World science communication competition for my piece about using lasers to remotely detect methane gas in mines, reducing the risk of disastrous explosions. Having previously worked with lasers for my research, I was aware that 2012 was the 50th anniversary of the invention of the diode laser. Choosing this topic gave me the chance to learn about interesting contemporary applications of lasers in physical chemistry. Emily Stephens, the 2012 runner-up, wrote about gene doping – a topic that was linked to the London Olympic Games, which were of course one of that year’s major events. For both of us, writing about a topical subject with a human angle turned out well.

The theme of this year’s competition is chemistry and art. Philip Ball has recently written a post nicely outlining why he thinks chemistry lends itself particularly well to the arts. I might propose extending this idea further to include the performing arts too.

There is a long history of presenting science on the stage. Christopher Marlowe’s audacious Doctor Faustus, who dabbled in alchemy and the occult, could perhaps be considered one of the early representations of a scientist in theatre. In more recent times, Carl Djerassi – chemist, novelist and dramatist – is known for depicting chemists in his plays. Last year, issues in contemporary science were raised at the National Theatre when the human side of a big pharma drug trial was portrayed in Lucy Prebble’s The effect. And next month Britain’s second most important ‘RSC’, the Royal Shakespeare Company, will premiere a play about J Robert Oppenheimer, the scientist whose Harvard chemistry degree eventually propelled him to a leading role in the Manhattan Project.

As this resurgence in science plays demonstrates, a performance can provide an engaging way of communicating scientific ideas. The Chemistry World competition now includes a second round of judging where shortlisted entrants are asked to present their piece in a format other than writing. It would be great if one of this year’s finalists considered presenting their topic to the judges with a performance or a play – after all, good science communication can work just as well on the stage as it does on the page.

Chris Sinclair holds an MSci in physics from Durham University and a PhD in laser cooling from Imperial College. He works at University College London where he conducts research in medical imaging. Chris writes about science and theatre.

 

If you are passionate about science and science communication, the 2014 Chemistry World science communication competition on the topic of chemistry and art offers a fantastic opportunity to demonstrate your skill, win £500 and be published in Chemistry World.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

Countdown to the 2014 Chemistry World science communication competition

Chemistry World blog (RSC) - 12 December, 2014 - 11:33

Quentin Cooper, science journalist and one of the judges for the upcoming Chemistry World science communication competition writes about how in every scientist there is a bit of an artist.

I’ve been asked to write 300 words on the topic of science and art. No problem. Although I can sum it up in one: scientists.

The term ‘scientist’ was only coined about 180 years ago to overcome a problem caused by the then newly formed British Association for the Advancement of Science, more recently known as the BA and more recently still as the British Science Association. These days it is celebrated as one of the oldest and most prestigious public-facing scientific bodies in the world, making science more comprehensible and accountable, and encouraging engagement across society and between disciplines. But back in the early 1830s, their meetings attracted a ragtag group of biologists, geologists, naturalists and others across the sciences, and nobody knew quite what to collectively call them.

One of the founders of the BA, William Whewell, writing anonymously in the Quarterly Review in 1834 offered a solution: ‘this difficulty was felt very oppressively by the members of the British Association for the Advancement of Science, at their meetings… some ingenious gentleman proposed that, by analogy with artist, they might form scientist.’

The ‘ingenious gentleman’ was, of course, Whewell himself. Although it took a few years to catch on, what’s usually overlooked is that strictly speaking if you mimic the way practitioners of arts are called artists, then practitioners of sciences should be called ‘sciencists’. With two Cs. Instead, because of Whewell’s analogy, the ‘t’ in scientist is on permanent loan from the arts meaning there is a bit of artist in every scientist.

I don’t think that’s just a quirk of etymology: that ‘t’ is not vestigial. Creativity and imagination abound across the sciences, no more so than in chemistry. Which is one of many reasons I’m looking forward to judging this year’s Chemistry World competition.

Quentin Cooper hosts a diverse range of events in Britain and beyond as well as appearing regularly on radio, TV and in print. He’s one of the most familiar and popular voices of science in the UK, writing and presenting many hundreds of programmes – including fronting Britain’s most listened to science radio show, Material world. He also holds several honorary science doctorates and is an honorary fellow of the Royal Society of Chemistry.

 

If you are passionate about science and science communication, the 2014 Chemistry World science communication competition on the topic of chemistry and art offers a fantastic opportunity to demonstrate your skill, win £500 and be published in Chemistry World.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

Chemosensors for the ASSURED communication of science

Chemistry World blog (RSC) - 11 December, 2014 - 13:19

Guest post from Tom Branson

Sometimes all the computer graphics in the world can’t make up for a good old hand drawn image. These sketches may never appear in shining lights on 10 metre billboards but they are often simple and clear enough to show you exactly what’s going on. That straightforward approach and a couple of other tricks were recently used to great effect for an article on the cover of Organic and Biomolecular Chemistry.

The cover shows ChemDraw images, a drawing of a cassava plant, and photos of the actual experiments to give a nice overview of the research. This kind of image is great for direct outreach and more literal communication of the scientific story. In an instant, anyone can see that the research involves taking something out of the plant, mixing in some other chemicals and observing a colour change. The graphic hooks you in with pretty colours, then offers something to get your grey matter around with the chemical structures. Check out the two corrinoid structures binding to either water or cyanide – that small difference creates the colour change. And as most people know, cyanide is the bad guy. If you would like to know more about the research itself, see the article in Chemistry World.

The image itself was designed by a student, Rene Oetterli, from the group of lead author Felix Zelder.  The work has a simple overall story to tell and this cover image communicates it very effectively.

This work stands out for another reason – it uses one of the most appropriate acronyms I’ve come across. The researchers have ASSURED a good detection. There is no doubt here, no ambiguity, they’ve done it. Not even reviewer three can argue with that acronym. The World Health Organisation (WHO) is responsible for coining this shortening of Affordable, Sensitive, Selective, User-friendly, Rapid, Equipment-free and Delivered. These attributes are needed for detection systems in remote settings, such as where the cassava plant is cultivated. The title of the paper includes this acronym although I think they missed a trick by omitting it from the cover design.

Acronyms are common in science and as with ASSURED, can give a great hook on which to communicate the technology. I remember TORPEDO being used in my old lab in Leeds, which was about Targeting Organelles (something something…). A fitting name for the project. But by far the best (or worst) acronym I’ve ever seen is from work looking into land mine detection using TIRAMISU. I’m still trying to figure out the connection.

A final point I want to make with this OBC article is the table of contents image. Instead of the usual graph or chemical structure that blends in with the others, there is a photo. This photo shows a farmer in Mozambique harvesting cassava plants and was taken by Lucas Tivana, one of the authors of the paper. Tivana had direct contact with these workers and could show through this image the real world applications of the study. This approach makes the work much more accessible, which could help a lay audience to engage with the work. The researchers, rightly so, thought this point was important, so featured the image as figure 1 in the paper.

Often the real world is forgotten in the pursuit of new technology and while pushing the boundaries of science for science’s sake is all well and good, being brought back to reality once in a while with a photo or a simple sketch can only be a good thing. Find the paper over at OBC.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

Countdown to the 2014 Chemistry World science communication competition

Chemistry World blog (RSC) - 5 December, 2014 - 13:34

Emily Stephens writes about the how and why of her piece on gene doping, which was selected for the runner-up prize in the 2012 Chemistry World science communication competition.

I started writing my article for the 2012 competition just after the London Olympics had finished. There was a lot of controversy surrounding the legitimacy of some of the competing athletes’ achievements, in particular Nadzeya Ostapchuk, who was stripped of her gold medal following a drug test. While doping has been prevalent in competitive sport since the 1960s, I found the relatively new concept of gene doping fascinating.

Gene doping is extremely hard to detect, so future sporting events could potentially be won based on which country is most advanced in genetic medicine rather than the athletes’ natural sporting ability.

However, despite finding this topic really interesting, after sending off my entry I got caught up in university life and completely forgot about the competition until I received an invitation to join the other shortlisted candidates for the prize giving evening at Burlington House in London.

The event provided a fantastic opportunity to chat to the competition judges and several others working the field of science communication, from journalists to those running higher education courses. They talked about their career paths as well as giving general tips for entering the industry. The resounding advice seemed to be ‘Just start writing!’ and the competition had given me an excellent opportunity to do this.

The winning article was a really interesting piece on the diode laser, and I was fortunate to be the runner-up. The £100 cash prize was an excellent bonus but the highlight of the experience was seeing my article published in Chemistry World (see Chemistry World, December 2012, p41). I’d definitely recommend entering the competition to all aspiring science writers. It was a great opportunity to research and write about an interesting topic, learn from a variety of experts and have a very enjoyable evening. I’m already working on my entry for this year!

Emily Stephens studied natural sciences, specialising in biochemistry, at Emmanuel College, Cambridge, UK. She was in her final year when writing the article for the 2012 competition. Since graduating she has been working in medical communications.

 

If you are passionate about science and science communication, the 2014 Chemistry World science communication competition on the topic of chemistry and art offers a fantastic opportunity to demonstrate your skill, win £500 and be published in Chemistry World.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

Peering into Peer Review

Chemistry World blog (RSC) - 3 December, 2014 - 17:23

‘I do not think it should appear in its present form’. Many a dejected researcher has read those words when their paper is summarily rejected by a journal. Rest assured, however, even the greatest scientific minds have read them on occasion.

Issue one of the Philosophical Transactions
© The Royal Society

In 1839, Charles Darwin submitted a paper on the geology of Glen Roy in the Scottish Highlands to the Royal Society’s Philosophical Transactions. He received a response from Adam Sedgwick, who would later become one of Darwin’s greatest critics. The Society Fellow admired Darwin’s insight but bemoaned his long-winded explanations, rejecting the paper in its present form. It was the only paper Darwin submitted to the journal.

Sedgwick’s critique of Darwin’s work forms part of a new exhibition at the Royal Society about the history of the Philosophical Transactions. Detailing the turbulent beginnings of the journal – which was first published during the Great Plague of London in 1665 – through to the modern publication, the exhibit shines a light on its colourful history. The extensive display, developed by the Royal Society and researchers at the University of St. Andrews, UK, also reveals the birth of the modern peer review process.

Although Darwin’s referee report highlights the humbling nature of a referee’s comments, it’s the correspondence of Sir George Stokes, the pioneer of fluid dynamics, which reveals new details about the nature of peer review. Stokes’ letters look rather mundane when compared to the more prominent pieces in the collection, such as Maxwell’s original paper on the electromagnetic field, but the monotonous language belies a crucial contribution to the scientific method.

Sir George Gabriel Stokes was secretary of the Royal Society from 1854 to 1885
© The Royal Society

Stokes’ letter is a simple clerical note asking a referee for their professional opinion and recommendation for a paper. The piece displays a staunch professionalism in the review process, which may have been lacking in the previous centuries: the work of Anton van Leeuwenhook on single-cell organisms in the 1600s, for instance, was published by the Royal Society even when they could not replicate his results.

Stokes also discussed papers at length with their authors during the submission process. He structured the review process by ensuring referees did not renege their responsibilities and edited the majority of papers published in the journal, becoming in the process the first modern scientific editor.  For want of a better phrase, he appears to have been a one-man band, having a fundamental impact on the way in which we conduct scientific research. Not bad for a chap who was also Lucasian Professor at the University of Cambridge at the same time.

The Philosophical Transactions: 350 years of publishing at the Royal Society exhibition is open to the public between 2 December 2014 and 23 June 2015 at the Royal Society, London. The exhibit forms part of a project called Publishing the Philosophical Transactions: the economic, social and cultural history of a learned journal, 1665-2015 led by Dr. Aileen Fyfe at the University of St. Andrews.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

Countdown to the 2014 Chemistry World science communication competition

Chemistry World blog (RSC) - 1 December, 2014 - 14:06

Philip Ball, science writer and one of the judges for the upcoming Chemistry World science communication competition writes about the art of chemistry.

Philip BallOf all the sciences, chemistry has always seemed to me to be closest to the arts. It appeals directly to the senses: the shapes and colours of molecules, the smells, the tactile aspects of materials and instrumentation. It draws on intuitions and craft skills, for example in the practice of forming crystals or getting a reaction to work. And most of all, it demands creativity and imagination: ‘chemistry creates its own object’, as Marcellin Berthelot puts it.

Most of chemistry is not about discovering pre-existing forms and objects, but deciding what to make and how to make it. Molecular targets express ideas. Can we make something that fits into this hole or onto that surface? Can we create new atomic unions, unusual topologies, surprising bulk properties, new oxidation states? Can we design molecules to assemble themselves into new and useful (or simply pleasing or amusing) superstructures? The questions aren’t limited to what the natural world provides, but are circumscribed by our imaginations, which in principle need have no boundaries.

For these reasons, chemistry is perhaps the science most shaped by the personal styles of its practitioners, who are often regarded by their peers as artists of some description: Robert Woodward or Vladimir Prelog spring to mind, but everyone will have their own favourite stylists, whether they work on organics, inorganics, organometallics, polymers or whatever. There is a great deal of creative expression in the theoretical side of chemistry too: it is a science complex enough to depend on finding the right approximations, analogies and perspectives, on extracting concepts and approaches that are meaningful rather than being correct in some absolute sense. All of this makes chemistry thrillingly human, with all the argument, dissent, idiosyncrasy and flair that this entails.

Chemistry ought by rights therefore to enjoy the same kind of criticism and appreciation afforded to art – we can have views about what we like, even about what moves us. I suppose that this sort of subjective evaluation is not often encouraged because chemistry is a science. But it would be great to see some of it in this competition. The theme of ‘chemistry and art’ might be interpreted as ‘chemistry of art’, and there is plenty of interest in that. But it can also be read as ‘chemistry as art’. I look forward to seeing both perspectives explored in the entries.

Philip Ball is a freelance writer. He previously worked for over 20 years as an editor for the international science journal Nature. He writes regularly in the scientific and popular media, and has authored many books on the interactions of science, arts and culture. Philip also writes for Chemistry World and has a regular column – ‘The Crucible‘.

 

If you are passionate about science and science communication, the 2014 Chemistry World science communication competition on the topic of chemistry and art offers a fantastic opportunity to demonstrate your skill, win £500 and be published in Chemistry World.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

November 2014: Colliding worlds

Royal Society R.Science - 1 December, 2014 - 10:17

This podcast from the Royal Society has moved.

Please resubscribe to the podcast here:
http://rss.royalsociety.org/podcasts/rscience

Thank you for continuing to subscribe to our updates.
If you have any queries please contact us.

Categories: Education

Practised procrastination

Chemistry World blog (RSC) - 27 November, 2014 - 18:01

Guest post by Heather Cassell

It’s an inevitability – there’s a task that should be doing but you can’t build up the enthusiasm. Normally mundane jobs can suddenly seem much more interesting to do.

A suspiciously tidy lab bench
Image by Jean-Pierre from Cosne-Cours-sur-Loire, France CC-BY-SA

For me it is always report writing. Although I love putting all of my results into order and writing it up succinctly for my colleagues and collaborators, I find I can rapidly lose focus. This is when the procrastination sets in. It never seems to matter how near the deadline is, how interesting my results are, or how important the document is – I feel an overwhelming desire to tidy my desk. ‘It’s important,’ I tell myself, ‘because if my desk is tidy I’ll have easy access to the papers and results I need to finish my report’. Just as a teenager’s room is never tidier than exam time, a researcher’s desk might only ever be clear when there’s a report to write.

Oh, but there are so many temptations! I’ve learned that when I’m meant to be writing a report it is best if I avoid the internet (see my previous post on the things you can discover while trawling twitter), so to physically remove the temptation often I’ll head into the lab.

But even the lab is full of potential distractions and procrastinatory aids, as there are always a diverse range of things to do! There is that pile of tip boxes that need refilling (it may have been gathering dust for weeks, but it seems urgent that they are to be filled and taken to autoclave). There are the consumables that need restocking, the buffers that need to be made, and stock solutions that need to be prepared. To the procrastinating mind, they all become more important than the task in hand. ‘If I’m not organised in the lab,’ I justify to myself, ‘then how can I work efficiently when I have finished my report?’

I try to reason with myself. I set targets and deadlines, promising myself a break if I can just reach the end of this section. As with exam dates and revision, eventually the deadline becomes so pressing that the level of stress rises and I actually buckle down to get on with the report.

It feels so good when it’s done that I consistently make promises to myself: ‘next time it will be different’; ‘next time I’ll just get it done without the distractions’. But the urge to procrastinate always returns. Who knows, without that urge my desk may never be clear.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

Countdown to the 2014 Chemistry World science communication competition

Chemistry World blog (RSC) - 21 November, 2014 - 11:05

In this first of a series of guest posts, Elizabeth Tasker writes about the how and why of her piece on cosmic chemistry, which was shortlisted in the 2013 Chemistry World science communication competition.

Elizabeth TaskerThere are some stories that beg to be written. When you find an experimental astrophysicist building a star-forming cloud in his laboratory, there is practically a moral obligation to remind the world that there are no boxes for ideas.

Astrophysicists usually come in three flavours: observers (telescope kids), theorists (‘The Matrix’ universes) and instrument builders (hand me a hammer). We cannot typically perform laboratory experiments since putting a star (or planet or black hole) on a workbench is distinctly problematic. The closest we come to hands-on experiments is through computer models, which is the toolkit I use when studying the formation of star-forming clouds. However, Naoki Watanabe had gone ahead and built his own cloud  in a super-cooled vacuum chamber.

What I liked most about Naoki’s work was the science question that was the heart of his project. Rather than take the tools of a given discipline and ask what could be learned, Naoki had picked the question and then drew knowledge he needed from astronomy, atomic physics and chemistry. This mingling of traditionally discrete subjects also made it a great fit for Chemistry World’s 2013 science communication competition theme of ‘openness’.

Discovering I’d been shortlisted was amazing. This feeling was briefly replaced by terror, since I was asked to produce a video clip describing my article as I was unable to attend the prize ceremony itself.

I recorded and re-recorded the video 10 times. All of them were identical. I feel there is a lesson to be learned about perfectionism that I likely failed to entirely grasp.

It was great to know that the judges had both enjoyed my article and were as excited as me about interdisciplinary work. Perhaps it is time to stop calling myself an ‘astrophysicist’ and simply say ‘scientist’.

Elizabeth Tasker is an assistant professor in astrophysics at Hokkaido University in Japan, where she explores star formation though computational modeling. Originally from the UK, Elizabeth completed her MSci in theoretical physics at Durham University, before pursuing her doctorate at the University of Oxford. Elizabeth keeps her own blog. She is working on a book on exoplanets (The planet factory), which will be published in 2016.

 

If you are passionate about science and science communication, the 2014 Chemistry World science communication competition on the topic of chemistry and art offers a fantastic opportunity to demonstrate your skill, win £500 and be published in Chemistry World.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

From Mould to Medicine

Chemistry World blog (RSC) - 20 November, 2014 - 10:29

Guest post by Rowena Fletcher-Wood

Excited, Mary Hunt tipped out the produce of her shopping: a large moulded cantaloupe. She had come across the cantaloupe by chance, and the ‘pretty, golden mould’ had proved irresistible. She had discovered the Penicillium chrysogeum fungus, a species that turned out to produce 200 times the volume of penicillin as Fleming’s variety. It was a serendipitous discovery, and vital at a time when the greatest challenge facing medicine was producing enough of the antibiotic to treat all of the people who needed it.

Hunt’s finding has been barely noticed beside the original accidental discovery: Fleming’s return from holiday to find a ‘fluffy white mass’ on one of his staphylococcus culture petri dishes. Fleming was often scorned as a careless lab technician, so perhaps the contamination of one of his dishes – which had been balanced in a teetering microbial tower in order to free up bench space – was not that unexpected. But Fleming had the presence of mind to not simply dispose of the petri dish, but to first stick it beneath a microscope, where he observed how the mould inhibited the staphylococcus bacteria. Competition between bacteria and fungi was well known and, in fact, when Fleming published in the British Journal of Experimental Pathology in June 1929, the potential medical applications of penicillin were only speculative.

In 1897, a 23 year old French scientist, Ernest Duchesne, published his doctoral thesis on antagonism between moulds and microbes – specifically, Penicillium glaucum versus Escherichia coli. His insight into the healing power of penicillin extended as far as curing guinea pigs of typhoid, but his research was never recognised.

Fleming lacked the resources and chemical training to isolate and test the active ingredient in penicillin, so he handed his research over to pathologist Howard Florey in 1938. Florey quickly transformed his Oxford lab into a penicillin factory. However, even with the discovery of Penicillium chrysogeum, production was slow.

The first patients to formally trial penicillin were a cluster of 25 streptococcus-infected mice. Unlike their 25 less fortunate friends who were not given the new medicine, they made a full and swift recovery. In 1940, Oxford policeman Albert Alexander became the first human to take penicillin. Alexander was suffering from fatal septicaemia, but within 5 days of treatment he began to recover. Sadly, the penicillin ran out and as techniques at the time were unable to produce enough, Alexander died. Although it was widely administered amongst the troops during World War II, once again, production was limiting.

The real breakthroughs in penicillin production began shortly after the establishment of a new American lab; in particular, the casual introduction of corn-steep liquor, a by-product of the corn wet milling process. This was being mixed with a wide variety of substances in an effort to find a use for it, and was seen to significantly increase penicillin yields.

In 1942, Anne Miller, suffering blood poisoning after a miscarriage, became the first successful civilian recipient, but further tests were still needed to explore the range of diseases treatable by penicillin.

Horrifically, in 1946-8, the Public Health Service, Guatemalan government, National Institutes of Health and the Pan American Health Sanitary Bureau approved a study to infect prison inmates, asylum patients, and Guatemalan soldiers with STDs and treat them with penicillin. Over 1300 people were infected, and 83 died.

Today, penicillin is the most used antibiotic in the world, treating large numbers of dangerous diseases. It also has many derivatives, the discovery of which began in 1957, when John Sheehan developed the first total synthesis. Although the synthesis proved difficult to upscale, it nevertheless produced a 6-aminopenicillanic acid intermediate – the starting material for a whole new class of antibiotics. Although the penicillin you and I take is manufactured in a lab, the battle between fungi and bacteria continues, and you can still come across this world-changing substance naturally growing in its parent mould.

Digg This  Reddit This  Stumble Now!  Share on Facebook  Bookmark this on Delicious  Share on LinkedIn  Bookmark this on Technorati  Post on Twitter  Google Buzz (aka. Google Reader)  
Categories: Education

WebElements: the periodic table on the WWW [http://www.webelements.com/]

Copyright 1993-2011 Mark Winter [The University of Sheffield and WebElements Ltd, UK]. All rights reserved.